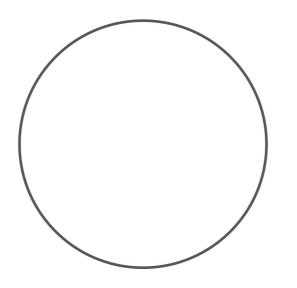
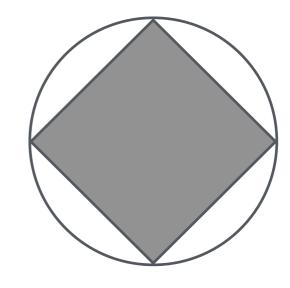
SEQUENCES & SERIES

A gentle introduction to limits

APPROXIMATING TUSING INSCRIBED POLYGONS

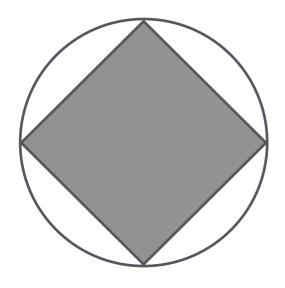
 \triangleright Consider a unit circle and let π denote its area. How can we estimate π ?



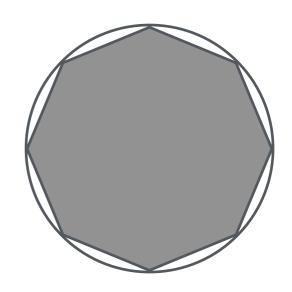


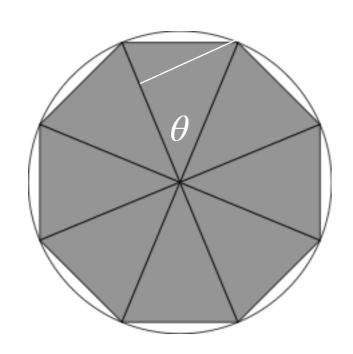
- ➤ Inscribe a square in this circle. <u>How?</u>
- ➤ Area of the square inscribed in this circle is less than the area of the circle
 - ➤ What is the area of this square?
- \triangleright Is the area of this square a good estimate for π ?

APPROXIMATING TUSING INSCRIBED POLYGONS



➤ By bisecting each side of the square, we get the vertices of a regular octagon inscribed within the circle

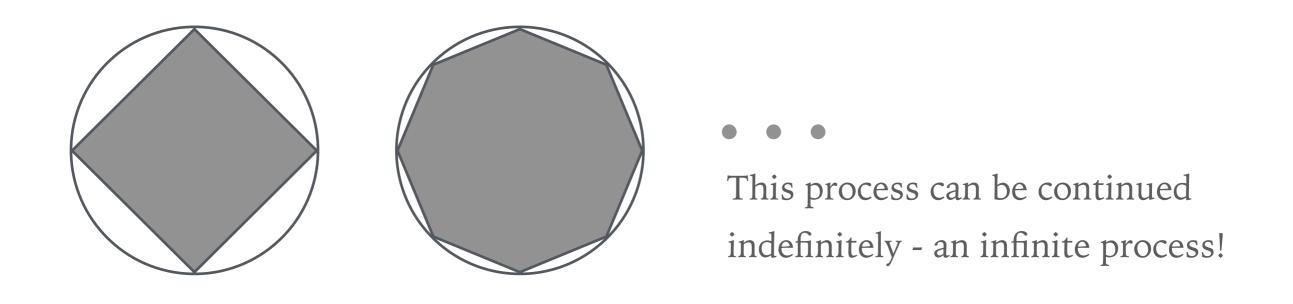




- ► Divide the octagon into 8 isosceles triangles each with central angle $\theta = 2\pi/8 = \pi/4$
- \triangleright Area of one triangle = ?
- ightharpoonup Area of the octagon = ?

 \triangleright Is the area of this octagon a good estimate for π ?

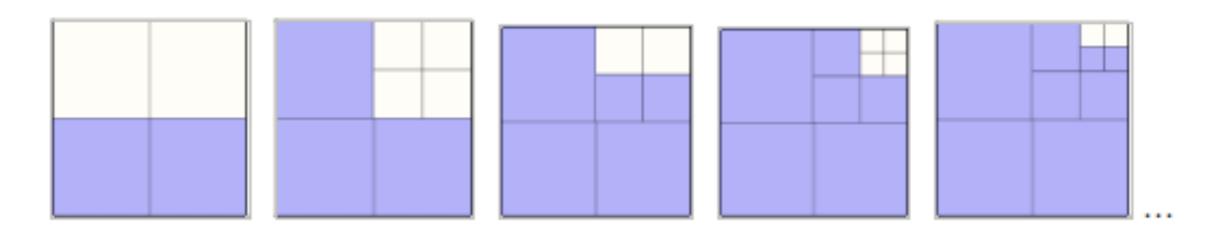
APPROXIMATING IT USING INSCRIBED POLYGONS



- ➤ Bisect each side of the octagon to get a regular 16-gon and continue ...
- ► Area of the *n*-sided regular polygon inscribed in the unit circle is $\frac{n}{2}\sin(\frac{2\pi}{n})$
- ➤ As *n* increases, the area of the regular polygon with *n* sides inscribed in the circle gets closer and closer to the area of the circle

ANOTHER INFINITE PROCESS

Consider an unit square



➤ What is the area of the purple region?

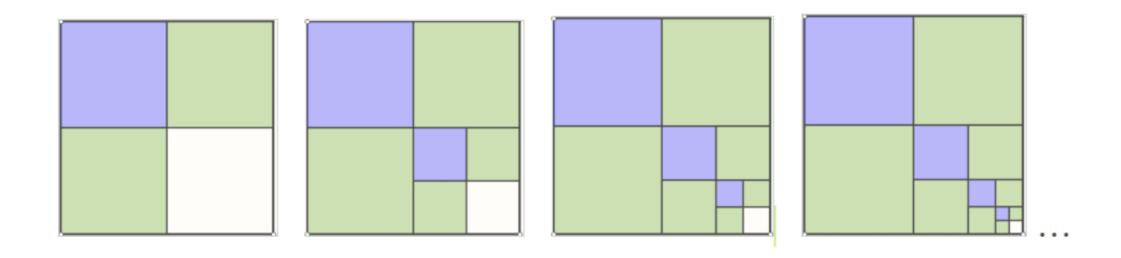
$$\rightarrow \frac{1}{2} + (\frac{1}{2})^2 + (\frac{1}{2})^3 + \dots$$

➤ "Eventually", the purple portions covers the square

$$\rightarrow \frac{1}{2} + (\frac{1}{2})^2 + (\frac{1}{2})^3 + \dots$$
 approaches 1

ANOTHER INFINITE PROCESS

➤ Consider an unit square



➤ What is the area of the purple region?

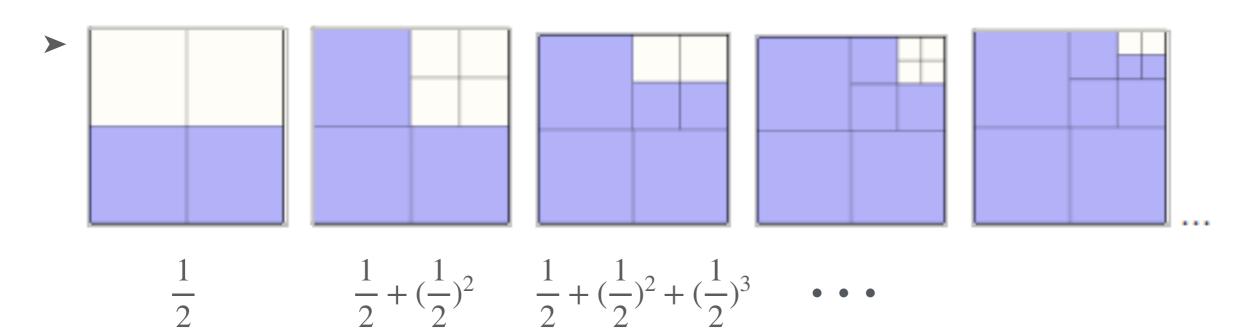
ANOTHER INFINITE PROCESS

➤ Chocolate in a Box

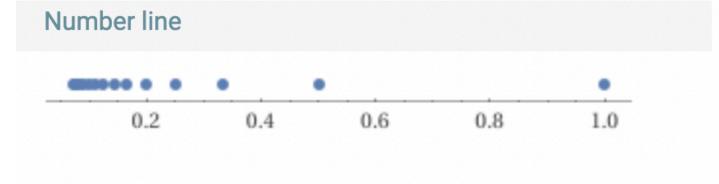
➤ Save the boxes, get 1 chocolate box in exchange of 10 empty boxes

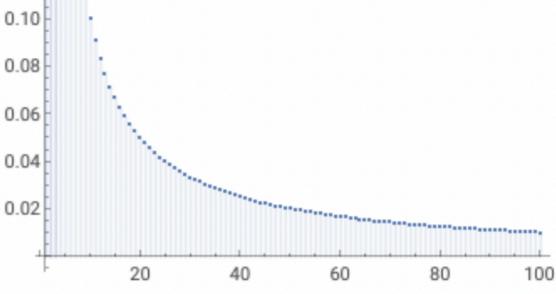
ightharpoonup Numerical sequence: an ordered list of real numbers x_1, x_2, x_3, \dots

- ➤ Eg: 1, 2, 3, 4, 5, notation: (*n*)
- ightharpoonup Approximating π
 - Sequence of areas: A_4 , A_8 , A_{16} , A_{32} , ...



 \succ (1/*n*) = 1, 1/2, 1/3, 1/4, ...



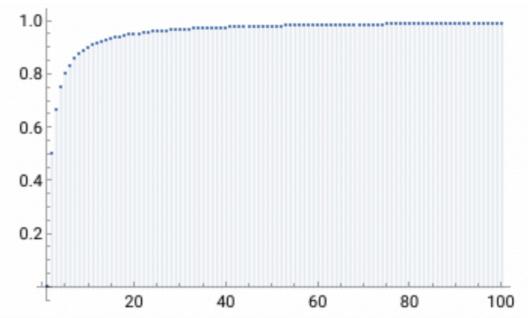


Decimal approximation

{1, 0.5, 0.333333, 0.25, 0.2, 0.166667, 0.142857, 0.125, 0.111111, 0.1, 0.0909091, 0.0833333, 0.0769231, 0.0714286}

- \triangleright Decreasing, "approaching 0". How to formalise (1/n) "approaches 0"?
 - ➤ As *n* increases, terms get closer and closer to 0 (terms accumulate near 0)

$$> (1 - \frac{1}{n}) = 0, 1/2, 2/3, 3/4, \dots$$

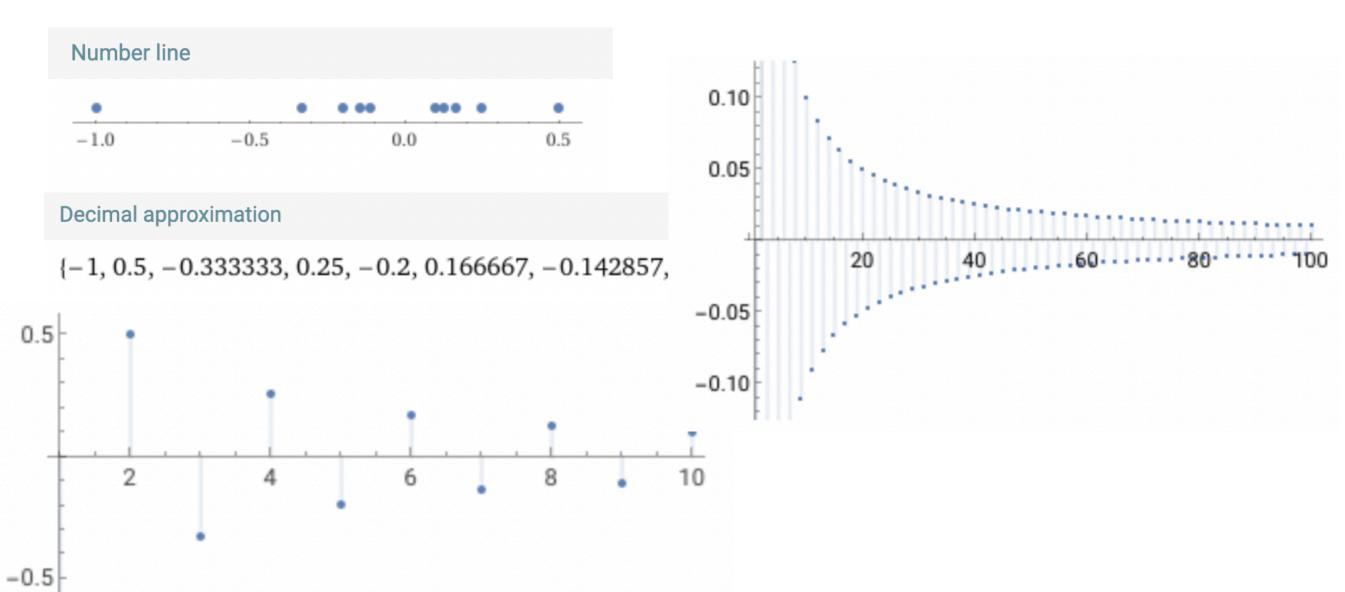


Decimal approximation

{1, 0.5, 0.666667, 0.75, 0.8, 0.833333, 0.857143, 0.875, 0.888889, 0.9, 0.909091, 0.916667, 0.923077, 0.928571}

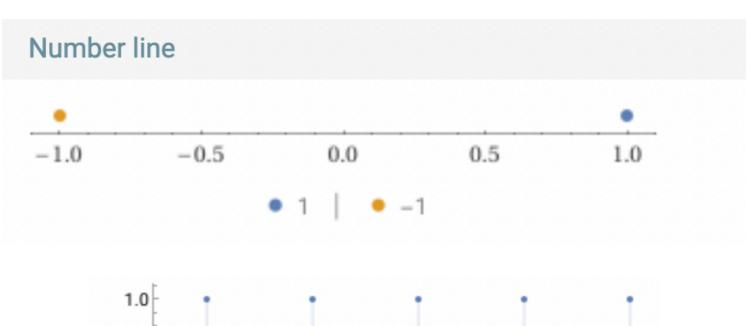
- ➤ Increasing, "approaching 1"
 - ➤ As *n* increases, terms get closer and closer to 1

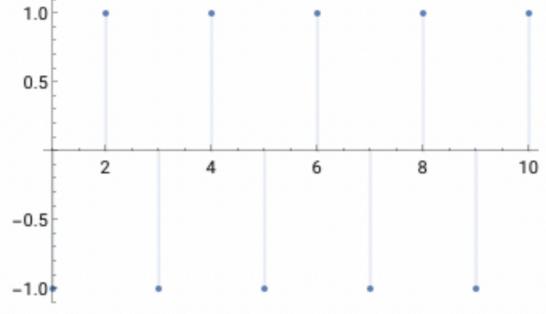
$$(\frac{(-1)^n}{n}) = -1, 1/2, -1/3, 1/4, \dots$$
 > Oscillating but "approach 0"



$$\rightarrow$$
 $((-1)^n) = -1, 1, -1, 1, ...$

➤ Oscillating

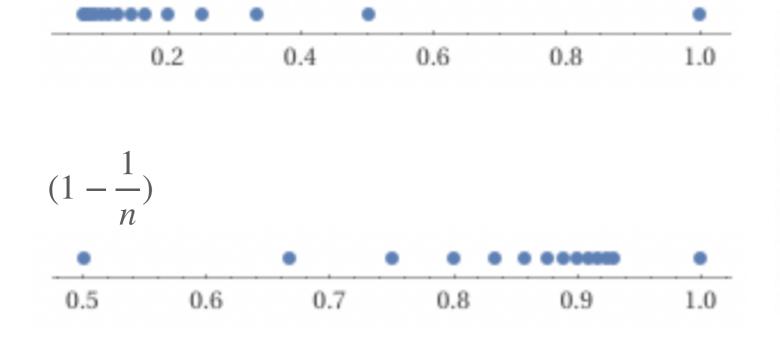


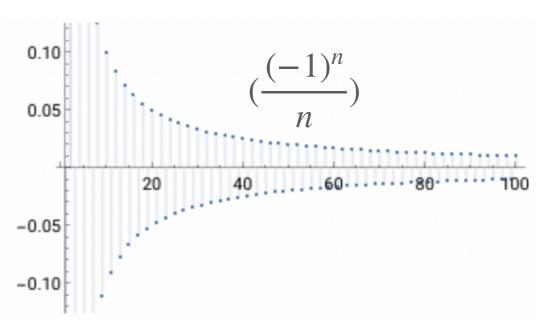


CONVERGENCE OF A SEQUENCE

- \blacktriangleright (x_n) is said to "converge to" the value ℓ if the terms of the sequence eventually "approach" ℓ (how to formalize "approach ℓ "?)
 - \blacktriangleright we can make x_i as close to ℓ as we want for all sufficiently large i
 - \blacktriangleright if such ℓ exists, the sequence is called convergent

(1/n)





TOWARDS FORMAL DEFINITION OF CONVERGENCE

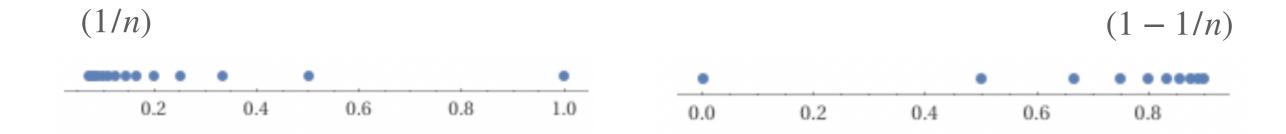
► For $\epsilon, \ell \in \mathbb{R}$ and $\epsilon > 0$ the ϵ -neighborhood of ℓ is $(\ell - \epsilon, \ell + \epsilon) := \{r \in \mathbb{R} : \ell - \epsilon < r < \ell + \epsilon\}$

$$\ell - \epsilon$$
 $\ell + \epsilon$

- ➤ Tail of a sequence (x_n) is x_N , x_{N+1} , x_{N+2} , ... for some $N \in \mathbb{N}$
- \triangleright Example: Consider (1/n)
 - ➤ 1/10, 1/11, 1/12, ... is a tail
 - ➤ 1/107, 1/108, 1/109, ... is another tail

CONVERGENCE OF A SEQUENCE

- ➤ How can we define convergence formally?
- ightharpoonup ϵ -neighborhood of ℓ is $(\ell \epsilon, \ell + \epsilon) := \{r \in \mathbb{R} : \ell \epsilon < r < \ell + \epsilon\}$
- ➤ Tail of a sequence (x_n) is x_N , x_{N+1} , x_{N+2} , ... for some $N \in \mathbb{N}$



- \blacktriangleright (x_n) is said to converge to ℓ if every ϵ -neighborhood of ℓ contains a tail of (x_n)
 - $\lim_{n \to \infty} x_n = \ell$ (ℓ is the limit of (x_n))
 - ► $x_n \to \ell$ $((x_n) \text{ converges to } \ell)$
- ➤ The limit of a sequence, if it exists, is unique. Why?