DEFINITION OF A SET

- A set is a well-determined collection of distinct objects that satisfies the ZFC conditions
- Well-determined refers to a specific property which makes it possible to identify whether a given object belongs to a set or not
- Zermelo-Fraenkel set theory with choice (ZFC) conditions
 - Does not allow a set corresponding to every property
 - Does not allow a set to contain itself
 - Does not allow a set containing all sets

- A function $f: X \to Y$ from a set X to a set Y assigns to each element $x \in X$ exactly one element $y \in Y$ (denoted by f(x) = y)
- X is called domain of f and Y is called the codomain of f
- Range of f is $\{y \in Y : \exists x \in X, f(x) = y\}$

• Two functions f and g are equal if they have the same domain X, same codomain Y and for each $x \in X$, f(x) = g(x)

Car travels at a constant speed of 40kmh⁻¹.
Write down a function that tells you the distance traveled given the total travel time.

• d(t) = 40 * t

 The IIT Palakkad library charges Rs. 5 per day for an overdue book. Write a function that takes as input "the no of days overdue" and gives as output the amount to be paid as a fine.

•
$$f(d) = 5 * d$$

REAL FUNCTIONS

- Real-valued function of a real variable $f : \mathbb{R} \to \mathbb{R}$
- ▶ Assigns to each $x \in \mathbb{R}$ exactly one element $y \in \mathbb{R}$ (denoted by f(x) = y)

f(x) = x

g(x) = 2x

 $h(x) = x^2$

ARROWS

GRAPH

How do we plot the function when the domain is infinite?

What is the domain of this function?

Is this a function? Do a vertical-line test!

INJECTIONS

• A function $f: X \to Y$ is an injection (or a one-to-one function) if for each $x, x' \in X$ such that $x \neq x'$ then $f(x) \neq f(x')$

 Horizontal line test: every line parallel to x-axis intersects with the function in at most one point

SURJECTIONS

• A function $f: X \to Y$ is a surjection (or an onto function) if for each $y \in Y$ there is $x \in X$ such that f(x) = y

BIJECTIONS

• A function $f: X \to Y$ is a bijection if it is an injection and a surjection

$f : \mathbb{R} \to \mathbb{R}$, where $f(x) = x^2$ for each $x \in \mathbb{R}$

How to move the function up or down? Change the point of intersection of function with y-axis

	f(x)	g(x)	h(x)
x = 0	0	-10	10
x = 1	1	-9	11
x = 2	4	-6	14
x = 3	9	-1	19

TRANSFORMATION - VERTICAL TRANSLATION

Move f up: h(x) = f(x) + 10

Move f down: g(x) = f(x) - 10

- h is the new function obtained from f
 - For each x, add 10 to f(x)
- ▶ g is the new function obtained from f
 - For each x, subtract 10 from f(x)

COMBINING FUNCTIONS

For functions $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$, define two new functions

 $x + x^2$

 χ^2

χ

- Sum (f+g)(x) = f(x) + g(x)
- Difference (f g)(x) = f(x) g(x)

- Take the graphs of f and g
- For each x, add the corresponding y coordinates

How to get mirror image of the function? Treat x-axis as the mirror

Reflect f: g(x) = -f(x)

- New function obtained from f
 - For each x, multiply f(x) by -1

COMBINING FUNCTIONS

- For functions $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$, define two new functions
 - Sum (f+g)(x) = f(x) + g(x)
 - Difference (f g)(x) = f(x) g(x)
 - Product $(f \cdot g)(x) = f(x) \cdot g(x)$
 - Quotient (f/g)(x) = f(x)/g(x) except where g(x) = 0

How to move the function left or right? Change the point of intersection of function with x-axis

TRANSFORMATION – HORIZONTAL TRANSLATION

COMPOSING FUNCTIONS

- For functions $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$, define a new function
 - ▶ $g \circ f : \mathbb{R} \to \mathbb{R}$ where $(g \circ f)(x) = g(f(x))$ for each $x \in \mathbb{R}$

TRANSFORMATION OF FUNCTIONS

How to get mirror image of the function? Treat y-axis as the mirror

TRANSFORMATION – REFLECT ABOUT Y-AXIS

Compress the function vertically

Stretch the function vertically

TRANSFORMATION - VERTICAL STRETCH/COMPRESS

Compress the function horizontally

Stretch the function horizontally

TRANSFORMATION - HORIZONTAL SCALING

SPECIAL FUNCTION TRANSFORMATIONS

Translation	Horizontal	f(x+k)	k > 0 move left, $k < 0$ move right
	Vertical	f(x) + k	k > 0 move up, $k < 0$ move down
Reflection	x-axis	-f(x)	
	y-axis	f(-x)	
Scaling	Horizontal	f(kx)	k > 0 shrink
	Vertical	kf(x)	0 < k < 1 stretch

COMBINING FUNCTIONS

- For functions $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$, define new functions
 - Sum (f+g)(x) = f(x) + g(x)
 - Difference (f g)(x) = f(x) g(x)
 - Product $(f \cdot g)(x) = f(x) \cdot g(x)$
 - Quotient (f/g)(x) = f(x)/g(x) except where g(x) = 0
 - Composition $g \circ f : \mathbb{R} \to \mathbb{R}$ where $(g \circ f)(x) = g(f(x))$

