Consider the sequence (F_n) defined by $F_1 = 1$, $F_2 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for n > 2. This sequence is known as the Fibonacci sequence - it is a sequence in which each element is the sum of the two elements that precede it.

- 1. Write down the first 10 terms of the sequence (F_n) .
- 2. Verify that $F_nF_{n+2} F_{n+1}^2 = (-1)^{n+1}$ for n = 1, 2 and 3. Can we prove this for every natural number n?
- 3. Let (a_n) be a new sequence defined by $a_n = \frac{F_{n+1}}{F_n}$ for $n \ge 1$. Write down the first 6 terms of the sequence (a_n) .
- 4. Prove that the sequence (a_n) is bounded.
- 5. Prove that the sequence $a_2, a_4, a_6, a_8, \ldots$ ((a_{2n}) , where $a_{2n} = \frac{F_{2n+1}}{F_{2n}}$) is decreasing. Note that this implies the sequence (a_{2n}) converges as it is also bounded.
- 6. Let $l=\lim_{n\to\infty}a_{2n}$. Prove that $l=\frac{1+\sqrt{5}}{2}$. Hint: observe that $l=\lim_{n\to\infty}\frac{F_{2n+1}}{F_{2n}}=\lim_{n\to\infty}\frac{F_{2n}}{F_{2n-1}}$.
- 7. Prove that the sequence $a_1, a_3, a_5, a_7, \ldots$ (denoted as (a_{2n-1})) is increasing and converges to $\frac{1+\sqrt{5}}{2}$.
- 8. Does the sequence (a_n) converge? If so, to what limit?

The number $\frac{1+\sqrt{5}}{2}$ is known as the golden ratio. Two quantities a>b>0 are in golden ratio if $\frac{a+b}{a}=\frac{a}{b}$.